126 research outputs found

    Two-Source Dispersers for Polylogarithmic Entropy and Improved Ramsey Graphs

    Full text link
    In his 1947 paper that inaugurated the probabilistic method, Erd\H{o}s proved the existence of 2logn2\log{n}-Ramsey graphs on nn vertices. Matching Erd\H{o}s' result with a constructive proof is a central problem in combinatorics, that has gained a significant attention in the literature. The state of the art result was obtained in the celebrated paper by Barak, Rao, Shaltiel and Wigderson [Ann. Math'12], who constructed a 22(loglogn)1α2^{2^{(\log\log{n})^{1-\alpha}}}-Ramsey graph, for some small universal constant α>0\alpha > 0. In this work, we significantly improve the result of Barak~\etal and construct 2(loglogn)c2^{(\log\log{n})^c}-Ramsey graphs, for some universal constant cc. In the language of theoretical computer science, our work resolves the problem of explicitly constructing two-source dispersers for polylogarithmic entropy

    The Small-Is-Very-Small Principle

    Full text link
    The central result of this paper is the small-is-very-small principle for restricted sequential theories. The principle says roughly that whenever the given theory shows that a property has a small witness, i.e. a witness in every definable cut, then it shows that the property has a very small witness: i.e. a witness below a given standard number. We draw various consequences from the central result. For example (in rough formulations): (i) Every restricted, recursively enumerable sequential theory has a finitely axiomatized extension that is conservative w.r.t. formulas of complexity n\leq n. (ii) Every sequential model has, for any nn, an extension that is elementary for formulas of complexity n\leq n, in which the intersection of all definable cuts is the natural numbers. (iii) We have reflection for Σ20\Sigma^0_2-sentences with sufficiently small witness in any consistent restricted theory UU. (iv) Suppose UU is recursively enumerable and sequential. Suppose further that every recursively enumerable and sequential VV that locally inteprets UU, globally interprets UU. Then, UU is mutually globally interpretable with a finitely axiomatized sequential theory. The paper contains some careful groundwork developing partial satisfaction predicates in sequential theories for the complexity measure depth of quantifier alternations

    Disjoint NP-pairs from propositional proof systems

    Get PDF
    For a proof system P we introduce the complexity class DNPP(P) of all disjoint NP-pairs for which the disjointness of the pair is efficiently provable in the proof system P. We exhibit structural properties of proof systems which make the previously defined canonical NP-pairs of these proof systems hard or complete for DNPP(P). Moreover we demonstrate that non-equivalent proof systems can have equivalent canonical pairs and that depending on the properties of the proof systems different scenarios for DNPP(P) and the reductions between the canonical pairs exist

    Bounded Arithmetic in Free Logic

    Full text link
    One of the central open questions in bounded arithmetic is whether Buss' hierarchy of theories of bounded arithmetic collapses or not. In this paper, we reformulate Buss' theories using free logic and conjecture that such theories are easier to handle. To show this, we first prove that Buss' theories prove consistencies of induction-free fragments of our theories whose formulae have bounded complexity. Next, we prove that although our theories are based on an apparently weaker logic, we can interpret theories in Buss' hierarchy by our theories using a simple translation. Finally, we investigate finitistic G\"odel sentences in our systems in the hope of proving that a theory in a lower level of Buss' hierarchy cannot prove consistency of induction-free fragments of our theories whose formulae have higher complexity

    Pairs, sets and sequences in first-order theories

    Get PDF
    Asuransi sebagai aktivitas bisnis diharuskan memenuhi prinsip-prinsip hukum asuransi. Salah satu prinsip yang harus dipegang teguh adalah principle of  utmost good faith, di samping prinsip yang lain. Prinsip ini berbunyi bahwa seorang tertanggung wajib memberi informasi secara jujur terhadap apa yang dipertanggungkan kepada penanggung. Dalam bisnis Islam, kejujuran merupakan prinsip yang harus dijunjung tinggi. Secara hukum, prinsip ini diatur dalam KUH Dagang. Persoalannya adalah apakah prinsip ini dianggap cukup dari sudut pandang hukum perjanjian syariah. Secara sekilas bahwa prinsip iktikad baik sempurna ini telah memenuhi asas perjanjian syariah, namun demikian tidak memiliki kriteria maksimal kejujuran. Ketiadaan kejujuran dalam bisnis asuransi akan berdampak pada batalnya perjanjian asuransi karena ada unsur cacat kehendak (‘uyub ar-ridla). Insurance as a business activity must fulfill principles of insurance law. One of the principles that must be hold on is the principle of  utmost good faith. The principle says that an endured person must honestly give information of  what should be given responsibility to the guarantor. In Islamic business, honesty is a principle that should be respected. From point of  view of  law, the principle is settled in commerce law. The problem is that whether the principle is represenative enough if it is viewed from law of  syariah agreement. At glance, the principle has fulfilled the basic of syariah agreement, however, it does not have maximum criteria of  honesty. Unavailability of honesty in insurance business will give effect of  invalidate of  insurance agreement, for there is a deformity of desire (‘uyub ar-ridla).</p

    Tighter hard instances for PPSZ

    Get PDF
    We construct uniquely satisfiable k-CNF formulas that are hard for the PPSZ algorithm, the currently best known algorithm solving k-SAT. This algorithm tries to generate a satisfying assignment by picking a random variable at a time and attempting to derive its value using some inference heuristic and otherwise assigning a random value. The "weak PPSZ" checks all subformulas of a given size to derive a value and the "strong PPSZ" runs resolution with width bounded by some given function. Firstly, we construct graph-instances on which "weak PPSZ" has savings of at most (2 + epsilon)/k; the saving of an algorithm on an input formula with n variables is the largest gamma such that the algorithm succeeds (i.e. finds a satisfying assignment) with probability at least 2^{- (1 - gamma) n}. Since PPSZ (both weak and strong) is known to have savings of at least (pi^2 + o(1))/6k, this is optimal up to the constant factor. In particular, for k=3, our upper bound is 2^{0.333... n}, which is fairly close to the lower bound 2^{0.386... n} of Hertli [SIAM J. Comput.'14]. We also construct instances based on linear systems over F_2 for which strong PPSZ has savings of at most O(log(k)/k). This is only a log(k) factor away from the optimal bound. Our constructions improve previous savings upper bound of O((log^2(k))/k) due to Chen et al. [SODA'13]

    Parameterized bounded-depth Frege is not optimal

    Get PDF
    A general framework for parameterized proof complexity was introduced by Dantchev, Martin, and Szeider [9]. There the authors concentrate on tree-like Parameterized Resolution-a parameterized version of classical Resolution-and their gap complexity theorem implies lower bounds for that system. The main result of the present paper significantly improves upon this by showing optimal lower bounds for a parameterized version of bounded-depth Frege. More precisely, we prove that the pigeonhole principle requires proofs of size n in parameterized bounded-depth Frege, and, as a special case, in dag-like Parameterized Resolution. This answers an open question posed in [9]. In the opposite direction, we interpret a well-known technique for FPT algorithms as a DPLL procedure for Parameterized Resolution. Its generalization leads to a proof search algorithm for Parameterized Resolution that in particular shows that tree-like Parameterized Resolution allows short refutations of all parameterized contradictions given as bounded-width CNF's

    The deduction theorem for strong propositional proof systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NP-pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NP-pairs

    Sparser Random 3SAT Refutation Algorithms and the Interpolation Problem:Extended Abstract

    Get PDF
    We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek [12], as a family of unsatisfiable propositional formulas for which refutations of small size in any propo-sitional proof system that possesses the feasible interpolation property imply an efficient deterministic refutation algorithm for random 3SAT with n variables and Ω(n1.4) clauses. Such small size refutations would improve the state of the art (with respect to the clause density) efficient refutation algorithm, which works only for Ω(n1.5) many clauses [13]. We demonstrate polynomial-size refutations of the 3XOR principle in resolution operating with disjunctions of quadratic equations with small integer coefficients, denoted R(quad); this is a weak extension of cutting planes with small coefficients. We show that R(quad) is weakly autom-atizable iff R(lin) is weakly automatizable, where R(lin) is similar to R(quad) but with linear instead of quadratic equations (introduced in [25]). This reduces the problem of refuting random 3CNF with n vari-ables and Ω(n1.4) clauses to the interpolation problem of R(quad) and to the weak automatizability of R(lin)

    Verifying proofs in constant depth

    Get PDF
    In this paper we initiate the study of proof systems where verification of proofs proceeds by NC circuits. We investigate the question which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC functions. Our results show that the answer to this problem is not determined by the complexity of the language. On the one hand, we construct NC proof systems for a variety of languages ranging from regular to NP-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit NC proof systems. We also present a general construction of proof systems for regular languages with strongly connected NFA's
    corecore